
Magnetic static response functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 S617

(http://iopscience.iop.org/0953-8984/15/5/314)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 06:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) S617–S630 PII: S0953-8984(03)56503-1

Magnetic static response functions

H Ebert, S Mankovskyy, H Freyer and M Deng

Physical Chemistry, University of Munich, Butenandtstrasse 5-13, D-81377 München, Germany

Received 22 November 2002
Published 27 January 2003
Online at stacks.iop.org/JPhysCM/15/S617

Abstract
The response of a normally non-magnetic material to an external static magnetic
field can be monitored by many different magnetic response functions. A
general scheme to supply a corresponding theoretical description is presented
that is based on the relativistic Korringa–Kohn–Rostoker Green function
method of band structure calculations, and for that reason has many appealing
features. First of all, it treats all spin as well as orbital contributions to the
induced magnetization on the same footing, accounting in particular for all
relativistic influences. Furthermore, it is extremely flexible and applicable
in principle to any kind of system. Finally, a formulation for any response
function can be worked out on this platform in a rather straightforward way.
This is demonstrated together with corresponding applications for the magnetic
form factor, the magnetic susceptibility and the Knight shift. In addition, a
description of the so-called field-induced magnetic circular dichroism in x-ray
absorption will be presented. In particular, it is shown that this new magneto-
optical effect supplies a rather unique probe, giving information separately on
the spin and orbital susceptibility in an element-resolved way.

1. Introduction

The investigation of the response of a material to an external magnetic field is one of the standard
ways to get information on its electronic structure. There are many different experimental
techniques available for that purpose that probe a corresponding response function. Without
doubt, the most common one is the magnetic susceptibility that can be measured by various
types of magnetic balance or magnetometer. For normally non-magnetic transition metal
systems, that are the main issue of this contribution, one usually has to consider a spin as well
as an orbital contribution. A consistent theoretical description of the Pauli spin susceptibility
was presented by Gunnarsson [1] and Janak [2] that, in particular, accounted for the Stoner
enhancement in a parameter-free way within the framework of spin density functional
theory (SDFT). While expressions for the orbital contribution to the susceptibility were already
worked out in the 1960s by Hebborn and Sondheimer [3] corresponding calculations were
performed only later [4–6]. While most of this work was done using a conventional �k-space
band structure method, Benkowitsch and Winter [5] used a real space method based on the
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Green function technique. In particular, these authors derived consistent expressions for the
conventional diamagnetic Langevin and Landau as well as paramagnetic (PM) Van Vleck
contributions to the orbital susceptibility.

The influence of the scalar-relativistic mass–velocity and Darwin corrections as well as
of the spin–orbit coupling on the spin susceptibility were investigated in the past by various
groups [7–10]. Staunton and co-workers used the fully relativistic version of the Korringa–
Kohn–Rostoker (KKR) Green function method of band structure calculation as a platform for
this purpose and investigated a number of pure transition metals. For the orbital susceptibility
relativistic influences have been investigated by Yasui and Shimizu [11], who gave an explicit
expression for a spin–orbit induced spin–orbital cross contribution χso to the susceptibility.

The theoretical approaches mentioned so far are essentially based on a linear response
formalism. Alternatively, one can explicitly add a Zeeman term accounting for an external
magnetic field to the Hamiltonian within a self-consistent band structure calculation [12].
This approach automatically accounts for the Stoner enhancement when a coupling to the
spin of the electrons is considered and SDFT is used as a formal platform. A Stoner-like
enhancement of the orbital susceptibility has been investigated by Hjelm et al [13] by adding
the coupling term µBlz Bext to the Hamiltonian that, in addition, included Brooks’ orbital
polarization (OP) term [14].

Obviously, the magnetic susceptibility is just one of the many response functions that
represents the magnetization induced by an external field. Accordingly, the various approaches
developed to calculate spin and orbital susceptibilities can in general be adopted to deal with the
corresponding parts of other response functions as well. This was demonstrated for example
by Oh et al [4] who calculated the various contributions to the induced magnetic form factor
that can be deduced from neutron scattering experiments. This is a rather interesting quantity,
because in an indirect way it gives—in contrast to the global susceptibility—information on
the spatial distribution of the induced magnetization. For ordered compounds, one can often
get this information even in an element-resolved way. This appealing feature is inherent in
the Knight shift that is a measure for the induced hyperfine field at a nuclear site. Again,
a corresponding theoretical description including in particular all orbital contributions was
developed by Ebert et al [15] starting from the work of Benkowitsch and Winter [5].

While the Knight shift clearly supplies element-specific information if a multi-component
system is investigated, it cannot be seen as a direct measure for the local or partial susceptibility
because there is no strict one-to-one correspondence between both quantities. In contrast to
this, one may use the induced circular magnetic dichroism in x-ray absorption (MCXD) to
probe the partial susceptibility, as was suggested recently [16]. This new magnetic probe
seems to be very promising because not only does it supply element-specific information but
it also allows us to split the partial susceptibility into its spin and orbital part.

In the following a theoretical scheme is presented that is based on the KKR Green function
method within the framework of SDFT. This approach allows us to deal with all mentioned re-
sponse functions in a unified way. In particular, a fully relativistic formulation is used to account
for all spin–orbit influences. This is indispensable in the case of the field-induced MCXD.

2. Theoretical framework

The most appropriate way to deal with magnetic response functions would be to use the linear
response formalism to determine in a first step the electronic current density induced by an
external magnetic field Bext. In a second step, the various response functions of interest can
be obtained from this. In fact, this was the approach used by Benkowitsch and Winter [5] and
Ebert et al [15] to deal with the orbital susceptibility and Knight shift, respectively.
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There are several reasons to proceed along these lines. First of all, a fully relativistic
treatment of the problem uses the current density as the central electronic quantity. Accordingly,
there is no need for a sometimes artificial separation into spin and orbital parts. This applies
in particular when one is dealing with the influence of the electron–electron interaction that
gives rise to Stoner-like enhancement effects. Concerning density functional theory, that is
the conventional platform when dealing with the electronic structure of solids, this leads in a
natural way to current density functional theory (CDFT) [17, 18]. Finally, one has to mention
that the derivation of expressions for a magnetic response function starts in many cases from
an expression involving the induced current density [5, 15].

Unfortunately, application of CDFT is connected with many technical and practical
complications. In particular, a convenient and reliable parametrization of the exchange–
correlation energy and the corresponding potential is not yet available. Accordingly, only
very few applications of CDFT to the calculation of magnetic response functions can be found
so far in the literature [19]. Because of this situation, the conventional approach is adopted in the
following, i.e. in spite of the fully relativistic treatment of the electronic structure all calculations
are performed in the framework of SDFT. To account nevertheless for an enhancement of orbital
contributions to a response function, Brooks’ OP scheme has been used.

The starting point of our approach is the linear response formalism formulated by means
of the Green function technique. Representing the coupling to an external magnetic field by
the perturbation Hamiltonian �H the Green function G B representing the electronic structure
in the presence of the field can be expressed in term of the Green function G for the field-free
case by the Dyson equation:

G B = G + G�HG B . (1)

Restricting to corrections of G linear in �H one has

G B = G + G�HG. (2)

With G B available the expectation value of any observable A can be obtained from the
expression

〈A〉 = − 1

π
Im Trace AG B (3)

〈A〉 = − 1

π
Im Trace (AG + AG�HG) (4)

with A the corresponding operator. If the expectation value of the observable vanishes for
the field-free case, obviously only the second field-dependent term in equation (4) has to be
considered.

Using the relativistic KKR band structure method the real space representation G(�r, �r ′, E)

of the Green function needed to use equation (4) can be written as [20]

G(�r , �r ′, E) =
∑
��′

Z n
�(�r , E)τ nn′

��′(E)Z n′×
�′ (�r ′, E) −

∑
�

[Z n
�(�r , E)J n×

� (�r ′, E)�(r ′ − r)

+ J n
�(�r , E)Z n×

� (�r ′, E)�(r − r ′)]δnn′. (5)

Here �r(�r ′) is assumed to be within the atomic cell n(n′) and τ nn′
��′(E) is the scattering

path operator with the combined index � = (κ, µ) standing for the spin–orbit and magnetic
quantum numbers κ and µ, respectively. Finally, the four-component wavefunctions Zn

� and
J n
� are the regular and irregular solutions, respectively, to the single-site Dirac equation for the

atomic site n.
The perturbation �H in equation (2) in general represents the coupling of the spin and

orbital motion to the external magnetic field. In addition to the direct Zeeman term �HB
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it includes a term �Hxc that represents the modified electron–electron interaction due to the
induced magnetization. Within plain SDFT this feed-back term is given by the change in the
spin-dependent exchange–correlation potential due to the spin magnetization [1, 2]. Within a
relativistic calculation the spin contribution to �H may therefore be written as [9]

�Hspin(�r) = �HB
spin(�r) + �Hxc

spin(�r) (6)

�Hspin(�r) = βσzµB Bext + βσz K xc,n
spin (�r)γ n(�r)χn

spinµB Bext. (7)

Here the usual assumption has been made that �Hxc
spin depends linearly on the induced spin

magnetization mspin(�r) = γ n(�r)χn
spin Bext with the normalized spin density γ n(�r), the local

spin susceptibility χn
spin for site n and the corresponding interaction kernel K xc,n

spin (�r) [1]. To
determine the unknown local susceptibility χn

spin the spin magnetization mspin(�r) is calculated
using equation (4) together with the Green function G B leading to the expression

mn
spin(�r) = −µB

π
Im

∫ EF

dE
∑

n′

∫
�n′

WS

d3r ′ βσz G(�r, �r ′, E)

× (βσz + βσz K xc,n
spin (�r ′)γ n′

(�r ′)χn′
spin)BextG(�r ′, �r , E), (8)

with �r ′ restricted to the atomic cell n′.
Integrating mn

spin(�r) within cell n and dividing by the external field Bext an implicit equation

for the local spin susceptibilities χn′
spin is obtained. For a pure, i.e. a one-component system,

this results in the well-known expressions:

χspin = Sχ0
spin (9)

χspin = 1

1 − Iχ0
spin

χ0
spin, (10)

where χ0
spin is the bare Pauli spin susceptibility with the Stoner enhancement ignored and the

Stoner exchange–correlation integral I . For more complex systems, the local susceptibility
χn′

spin can be obtained by solving a system of linear equations analogous to equation (8).
The expressions worked out by Benkowitsch and Winter [5] for the diamagnetic Langevin,

Landau and PM Van Vleck contributions to the orbital susceptibility can be transferred
straightforwardly to their proper relativistic counterparts. For the corresponding Van Vleck
magnetization mn

VV(�r) one obtains an expression completely analogous to that given in
equation (8), with the spin operator σz replaced by the z component of the orbital angular
momentum operator lz . Within a plain SDFT calculation there is no orbital interaction kernel
and therefore the second term would vanish [5]. However, a treatment within CDFT would lead
to a feed-back of the induced orbital magnetization and therefore to a Stoner-like enhancement
of the orbital susceptibility in analogy to equation (10). This mechanism has been accounted
for in the past in some few cases by formulating the corresponding interaction kernel K xc,n

orb (�r)

by making use of Brooks’ OP scheme [13, 14]. This approach has also been used here.
From equations (4) and (8) one can see that the Pauli spin susceptibility χspin is obtained

from the expectation value 〈σz〉 that is non-zero because of the perturbation �Hspin that also
involves the spin operator σz . In an analogous way, the Van Vleck susceptibility χVV is
connected to 〈lz〉 and the perturbation �Horb that involves the angular momentum operator
lz . Within a non-relativistic calculation there would be no cross terms 〈σz〉 − �Horb and
〈lz〉−�Hspin [5]. However, including the spin–orbit coupling when calculating the underlying
electronic structure, corresponding small contributions χso and χos to the spin and orbital
susceptibility, respectively, occur. If not otherwise noted these will be combined with the
Pauli spin and Van Vleck orbital susceptibilities. In addition the diamagnetic Langevin and
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Landau susceptibilities have to be considered in the following only in a few cases. For that
reason the orbital susceptibility will be identified with its normally dominating Van Vleck part
if not otherwise noted.

Having calculated the local spin and orbital susceptibilities χn
spin and χn

VV, respectively,
including the Stoner enhancement mechanism, any response function directly related to the
corresponding magnetization can be calculated straightforwardly. This applies, for example,
for the induced form factor f (�q) that depends on the scattering vector �q . Within the widely
used dipole approximation the corresponding normalized spin and orbital contributions to f (�q)

are given by [21]

fspin(�q) = 1

χspin Bext

∫
�WS

d3r j0(�q · �r)mspin(�r) (11)

forb(�q) = 1

χorb Bext

∫
�WS

d3r ( j0(�q · �r) + j2(�q · �r))morb(�r). (12)

For a comparison with experimental data stemming from elastic neutron scattering
measurements, the appropriate average has to be taken:

f̄ (�q) = fspin(�q)χspin + forb(�q)χorb

χspin + χorb
. (13)

With χn
spin and χn

orb available, the Hamiltonian �Hspin in equation (7) and its orbital
counterpart �Horb are obviously completely fixed. This way, the Green function G B in
equation (2) is also completely specified and the expectation value of any observable may
be obtained from equation (4). An example for this is the Knight shift, which is determined
for example by NMR and is connected with the hyperfine interaction operator

Hhf = −1

c
�jel · �µn × �r/r3, (14)

where �µn is the nuclear moment and �jel = −ec�α is the electronic current density with �α the
vector of Dirac matrices [22]. This leads for the Knight shift to the following expression:

K = − e

π Bext
Im

∫ EF

dE
(�r × �α)z

r3
G B(�r , �r , E), (15)

that obviously accounts properly for all enhancement effects via �Hxc. Calculating the Knight
shift as sketched above will always give the total shift. However, a decomposition into the
conventional Fermi contact, spin–dipolar and orbital contributions is possible by applying a
corresponding decomposition to the hyperfine Hamiltonian Hhf [23]. An additional analysis
of the results is possible by restricting the perturbation Hamiltonian �H used to determine
G B to its spin part �Hspin or its orbital part �Horb, respectively. This way one can get, for
example, the contribution to the Knight shift KVV, that is the counterpart to the Van Vleck
susceptibility χVV.

Another way to monitor the induced magnetization is supplied by optical experiments.
An example for this is the magneto-optical Kerr effect in the visible regime of light [24].
Unfortunately, the resulting Kerr spectra are quite complex and cannot be straightforwardly
connected with the induced magnetization. In contrast to this situation, the induced MCXD
gives access to the spin and orbital magnetic susceptibilities in an element-specific way [25].
To get a proper description of this new kind of experiment the x-ray absorption coefficient
µλ(ω) for radiation of energy h̄ω and polarization λ is expressed by [26]

µλ(ω) ∝
∑

i

〈�i |X†
�qλ

G B(E)X �qλ|�i〉�(E − EF), (16)
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where X �qλ stands for the electron–photon interaction operator and i numbers the involved core
states |�i 〉 with energy Ei and the corresponding final state energy E = Ei + h̄ω.

Because the external magnetic field breaks the time reversal symmetry, a magnetic circular
dichroism will be induced that can be expressed by the difference in absorption for left and
right circularly polarized light:

�µ(ω) = µ+(ω) − µ−(ω). (17)

Performing measurements, for example at the L2,3-edges of transition metals, the so-
called sum rules [27–30] can be applied in the usual way giving access to the induced spin
and orbital moment connected with the d electrons of the absorbing atom. The spin moment
µspin of course stems primarily from the Pauli spin susceptibility, while the orbital moment
µorb is connected to the Van Vleck orbital susceptibility. In both cases there are minor spin–
orbital cross contributions that occur because of the presence of spin–orbit coupling (see above
and [11]).

3. Induced spin and orbital magnetization

The central quantities supplied by the theoretical approach sketched above are the induced
spin and orbital magnetizations, mspin(�r) and morb(�r), respectively. For the corresponding r -
dependent spin susceptibility χspin(�r) = γ (�r)χspin it is usually assumed that the normalized spin
density γ (�r) is well represented by the square of the wavefunctions |ψ(�r , EF)|2 at the Fermi
level. Corresponding results are shown for the spherically averaged spin susceptibility χspin(r)

of Nb in the top panel of figure 1. Obviously, χspin(r) is dominated by the contributions of the
4d electrons and accordingly reflects the r dependenceand nodal structure of the corresponding
wavefunctions. In line with this one finds that χspin(r) gets more localized if one goes along a
transition metal row.

The approximation for the spatial variation of γ (�r) mentioned above can be avoided by
solving equation (8) self-consistently for mspin(�r). In some cases, as for example for Pd, this
may be important because mspin(�r) determines the Stoner exchange correlation integral and in
that way the Stoner enhancement factor S.

Figure 1 shows that the r -dependent orbital Van Vleck susceptibility mVV(�r) may be quite
different from its spin counterpart mspin(�r). The reason for this is that mspin(�r) is primarily
determined by the change in population of states with spin up and spin down around the
Fermi level and for that reason can be well approximated by the average squared wavefunction
|ψ(�r , EF)|2. mVV(�r), on the other hand, is connected with the distortion of the wavefunctions
due to the external field. For that reason, all states around the Fermi level contribute. As a
consequence mVV(�r) does not change as strongly as mspin(�r) if one goes along a transition
metal row.

As indicated above, the various response functions allow us to monitor the induced spin
and orbital magnetizations in a more or less direct way. The susceptibility gives just a spatial
average of the sum of spin and orbital contributions for a system. The Knight shift, on the other
hand, primarily probes the nuclear near region and for that reason supplies element-specific
information. The form factor, on the other hand, reflects the r dependence of mspin(�r) and
mVV(�r) by its dependence on the scattering vector �q. However, in spite of the complementary
information supplied by these response functions none of them allows us to separate the spin
and orbital contributions to the induced magnetization in a direct way. For that reason the field
induced MCXD mentioned above seems to be a promising new tool that is able to supply this
information.
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Figure 1. Spherically averaged spin and Van Vleck r-dependent susceptibilities χspin(r) and
χVV(r), respectively, weighted with r2 for Nb.

4. Magnetic susceptibility

The results obtained for the un-enhanced and enhanced Pauli spin susceptibility, χ0
spin and χspin,

respectively, of 3d transition metals, using the relativistic formalism presented above, are rather
close to those calculated before in a non-relativistic way [2]. Although the spin–orbit coupling
has been included, χ0

spin is found to be essentially proportional to the density of states at the
Fermi level n(EF). The Stoner enhancement factor S for the 3d transition metals lies in general
between 1 and 2 (see figure 2). For Fe, Co and Ni the SDFT-based calculation correctly leads
to a Stoner product Iχ0

spin that is larger than 1, corresponding to a ferromagnetic instability.
For that reason the enhanced spin susceptibility χspin is not defined in this case.

In contrast to the spin susceptibility χ0
spin the orbital Van Vleck susceptibility χ0

VV varies
quite smoothly along a transition metal row, as is shown in figure 3 for the 4d elements.
The nearly parabolic variation of χ0

VV with the atomic number can be easily explained by the
expression deduced via perturbation theory that leads to the expectation that, for a transition
metal, χ0

VV should essentially be determined by the term nd(10−nd)/�E , with nd the number
of d electrons and �E the d-band width. In line with these considerations one finds that
χ0

VV decreases when going from the 3d to the 4d and finally to the 5d transition metal row,
because the d-band width �E increases along this sequence. In figure 3 the enhanced orbital
susceptibility χVV is also given that has been calculated using the OP formalism. As one
notes, the enhancement is, in general, of the order of 10%. In particular one notes that this
enhancement is much too small to give rise to a spontaneous magnetic ordering, as is the case
for the spin susceptibility of Fe, Co and Ni.

The formalism presented in section 2 can be straightforwardly applied to disordered
alloys [31]. Corresponding results for the alloy system Agx Pt1−x are shown in figure 4. As one
can see, the calculations distinguish between the partial susceptibility of Ag and Pt, which turn
out to be rather different. The two partial susceptibilities χα shown in figure 4 represent the
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Figure 2. Un-enhanced and enhanced Pauli spin susceptibility χ0
spin and χspin, respectively, of the

3d transition metals. Due to the ferromagnetic instability χspin is not defined for the PM state of
Fe, Co and Ni.

Figure 3. Un-enhanced and enhanced orbital Van Vleck susceptibility χ0
VV and χVV, respectively,

of the 4d transition metals. The Stoner-like enhancement has been treated using the OP formalism.

sum of the Pauli spin, the diamagnetic Langevin and the Van Vleck susceptibilities. Only the
diamagnetic Landau susceptibility, which should be relatively small for this system, has been
ignored. For Pt there is a nearly concentration-independent Van Vleck contribution to χPt

VV
that lies in the order of 40 × 10−6 emu mol−1. The dominating contribution, however, stems
from its spin part χPt

spin that is connected with the d electrons. Obviously, this contribution
is responsible for the pronounced concentration dependence of χPt and with this also of the
average susceptibility χ̄ = xAgχ

Ag + xPtχ
Pt. The concentration dependence of χPt

spin can be
explained by the rapid decrease of the Pt density of states at the Fermi level nPt(EF) if Ag
is added to Pt. This diminishes the un-enhanced partial spin susceptibility χ

0,Pt
spin accordingly,

leading to an even more rapid decrease for the enhanced partial spin susceptibility χPt
spin. In

contrast to Pt there is only a minor variation of the partial susceptibility χAg of Ag with
concentration. In particular its spin part χ

Ag
spin is much smaller than that for Pt, in contrast to

expectations based on a rigid band model.
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Figure 4. Calculated partial magnetic susceptibility for Ag and Pt in Agx Pt1−x as well as the
total susceptibility as a function of the Ag concentration together with corresponding experimental
data [32].

The resulting total average susceptibility χ̄ is compared in figure 4 with the corresponding
experimental data. Corresponding measurements using a magnetometer or magnetic balance
give only the total but not the partial susceptibilities. For that reason an interpretation of
experimental data such as those shown in figure 4 is not straightforward. In fact, the rigid
band model has frequently been used in the past in this situation, implying that the partial
susceptibility of Ag and Pt in fcc-Agx Pt1−x should be the same. The calculations that give
results in fairly good agreement with experiment definitely showed that this is not the case.

5. Knight shift

In contrast to a susceptibility measurement, element-specific information on the induced
magnetization is obtained via NMR. Corresponding results for the Knight shift of Ag and
Pt in the alloy system AgxPt1−x are shown in figure 5. As can be seen, the Knight shift of
Pt on the Pt-rich side is negative. The reason for this is the dominating core polarization
contribution that has the same origin as its counterpart in ferromagnetic metals [33]. The
high spin polarization of the d electrons, reflected by a large partial spin susceptibility χPt

spin,
gives rise to a distortion of the core wavefunctions, leading this way to a hyperfine field that
is proportional to the induced spin moment. Comparing the theoretical Knight shift of Pt
with the experimental values one finds that the former ones are too small in magnitude. The
reason for this discrepancy is that the core polarization mechanism is underestimated by plain
SDFT-based calculations [33, 34]. In line with this one finds a fairly good agreement between
theory and experiment for the Ag-rich side of the system. For this range of concentration the
remaining contributions to the Knight shift—in particular that connected with the valence band
s electrons—are dominating.

For Ag in Agx Pt1−x one also finds a negative Knight shift on the Pt-rich side of the system.
Assuming a rigid-band behaviour one would ascribe this to a core-polarization contribution,
as is present in the case of Pt. The results presented above for the partial spin susceptibility
χ

Ag
spin of Ag, however, rule out this interpretation. This is also obvious from the calculated core



S626 H Ebert et al

Figure 5. Knight shift K α of Ag and Pt in Agx Pt1−x together with corresponding experimental
data [32]. The open squares give the contribution to the theoretical Knight shift due to the core
polarization mechanism.

polarization shift shown separately in figure 5. In contrast to Pt one finds that the negative
Knight shift is connected with valence s electrons. Inspection of equation (15) shows that
calculating the Knight shift one has to account for the perturbation due to the magnetic field
not only at the central site but for the whole system, i.e. one has to perform the integration over
the whole space. This implies that the strong spin polarization on the Pt atoms can have an
impact at the Ag sites. This indeed gives rise to a transfer mechanism that leads to the negative
Knight shift of Ag on the Pt-rich side [32, 35]. This obviously means that the Knight shift is
not a local probe in a strict sense but it will always be influenced by the magnetic properties
of the neighbouring atoms.

6. Magnetic form factor

Neutron scattering experiments have been done for quite a few pure transition metals and
compounds to determine the induced magnetic form factor. To some extent, this work was
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Figure 6. Top: spin, orbital and average magnetic form factor of AF-Cr. The full circles and
diamonds give experimental data that stem from high-energy photon [36] and neutron [37] scattering
experiments. Bottom: spin, orbital and average induced magnetic form factor of PM-Cr together
with experimental data from neutron scattering experiments [38, 39].

motivated by the fact that the induced magnetic form factor reflects the degree of localization
of the dominating d electrons. In other cases, the experiment was focused on the magnetic
properties of the investigated system. An especially interesting case with respect to this is Cr
that can be investigated in its antiferromagnetic (AF) ground state below the Neél temperature
as well as in a PM state above it. A comparison of the various form factors is shown in
figure 6 for the AF as well as the PM state. For the AF state, the neutron measurements
were complemented recently by a non-resonant high energy x-ray scattering experiment, that
probes only the spin part of the magnetic form factor [37]. From the finding that the results of
both types of experiment hardly differ it was concluded that the permanent orbital magnetic
moment in AF-Cr has to be very small. This could be confirmed by corresponding relativistic
band structure calculations. The orbital magnetic form factor corresponding to the spin–orbit
induced magnetization is shown separately in figure 6. Because the orbital moment is very
small (−0.0004 µB), the total form factor is dominated by its spin part, which was found in
very good agreement with the experimental data.
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For the PM state of Cr, the situation is completely reversed. The induced magnetic form
factor corresponding to the Van Vleck orbital susceptibility now contributes about 80% of the
total magnetic form factor, as is shown in the lower part of figure 6. In addition, one notes that
the orbital-induced form factor of PM-Cr does not decay as rapidly with the magnitude of the
scattering vector �q as its counterpart for AF-Cr. This indicates that the field-induced orbital
magnetization in PM-Cr is more localized than the spin–orbit induced one in AF-Cr.

Finally, one should note that the calculated magnetic form factor of PM-Cr is in very good
agreement with the experimental results that have been corrected for a minor diamagnetic
contribution that is connected with the Langevin diamagnetism.

7. Field-induced magnetic circular x-ray dichroism

MCXD is now a standard tool to study spontaneously magnetized materials. In particular,
it allows us to deduce from the corresponding dichroic spectra the spin and orbital magnetic
moments of the absorbing atom by making use of the so-called sum rules. As could be
demonstrated, for example, in the case of the Kerr effect, magneto-optical effects occur not
only for spontaneously magnetized materials but also if the magnetization is imposed by
an external magnetic field [24]. Accordingly, it is obvious that the MCXD should also be
observable for non-magnetic solids in the presence of a magnetic field [16].

Figure 7 shows corresponding theoretical results obtained for the M2,3 edge of fcc-Rh.
The top panel shows the conventional x-ray absorption spectrum µM2,3 that is quite typical
for an fcc transition metal. The lower panel gives the field-induced MCXD spectrum �µM2,3

calculated for three different situations. The broken curve has been calculated assuming a
coupling of the external field to the spin of the electrons only, i.e. �H in equation (2) has
been set to �Hspin. The resulting MCXD spectrum �µM2,3 , i.e. the difference in absorption
for left and right circularly polarized radiation, is very similar to that observed for Rh in the
ferromagnetic alloy fcc-Cox Rh1−x [40]. In this case there is only a minor spin–orbit induced
orbital magnetic moment present for Rh, leading to a ratio of the MCXD amplitudes at the
M3 and M2 edges of about −1:1. This is completely in line with the result obtained for �µM2,3

in figure 7, for which only a minor orbital magnetization is induced via the spin–orbital cross
mechanism.

If, on the other hand, �H is set to �Horb, the ratio of the MCXD amplitudes is completely
different, reflecting the strong induced orbital magnetization. Adding both curves together,
one obtains the proper dichroic spectrum that now represents the combined spin and orbital
magnetization. However, these two contributions can be decomposed by making use of the
MCXD sum rules. In contrast to their conventional application to spontaneously magnetized
solids, they now give the spin and orbital susceptibilities χspin and χorb, respectively, as outlined
in section 2. This procedure has been applied recently to induced MCXD spectra calculated
for Pt in fcc-Agx Pt1−x , leading to results for χPt

spin and χPt
orb in very good agreement with those

calculated directly [25].

8. Summary

A very flexible and powerful scheme to calculate magnetic response functions has been
presented that makes use of the KKR Green function method of band structure calculation.
Expressing the Green function of a system in the presence of a magnetic field in terms
of an appropriate perturbation Hamiltonian and the Green function for the field-free case,
the expectation value for any observable can be obtained straightforwardly. Corresponding
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Figure 7. Absorption coefficient µM2,3 and induced MCXD spectrum �µM2,3 for the M2,3 edges
of Rh in fcc-Rh.

expressions and results are presented for the spin and orbital magnetic susceptibilities which, in
particular, include corrections due to the Stoner enhancement. This also applies for the Knight
shift data presented for Agx Pt1−x . These results clearly demonstrate the possible occurrence of
a negative Knight shift due to neighbouring atoms with a large local spin susceptibility. For AF-
as well as PM-Cr the corresponding form factors were discussed in detail. Comparison of the
orbital form factors clearly showed that the spin–orbit and field-induced orbital magnetization
in AF- and PM-Cr, respectively, have a rather different spatial distribution. Finally, first results
for the field-induced MCXD have been presented that demonstrate that this might be a very
helpful analytical tool in the future that gives access to the spin and orbital susceptibility
separately in an element-resolved way.
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